Introduction to Quantum Computing

Kitty Yeung, Ph.D. in Applied Physics

Creative Technologist + Sr. PM
Microsoft
www.artbyphysicistkittyyeung.com
@KittyArtPhysics
@artbyphysicistkittyyeung

June 21, 2020
Hackaday, session 12
Other communities, session 4
\int_{-}HackadayU
an alternative grad school for hardware hackers
Learn from experienced instructors from all over the world. Available for free to everyone. All Learn from experienced instructors from ali over
proceeds go towards socially conscious causes
(\%) REVERSE ENGINEERING Leam the findamentas) of feverse
enginge SUMMER 2020
 KICAD \& FREECAD 101
Leann he basics of firviidesign
with open source tools SUMMER 2020

Class structure

- Comics on Hackaday - Introduction to Quantum

Computing every Sun

- 30 mins - 1 hour every Sun, one concept (theory, hardware, programming), Q\&A
- Contribute to Q\# documentation http://docs.microsoft.com/quantum
- Coding through Quantum Katas
https://github.com/Microsoft/QuantumKatas/
- Discuss in Hackaday project comments throughout the week
- Take notes

A qubit system is all the possible configurations in superposition.

PIE CHART DENOTING PROBABILITY OF EACH CONFIGURATION

ONE QUBIT, Two configunations:
$a|0\rangle+b|1\rangle$
$a^{2}+b^{2}=1$ (total probability adds up to 1)

000
N qubits will have 2^{N} possible configurations in superposition!

THREE QUBITS, Eight configurations:
a $|000\rangle+b|001\rangle+c|010\rangle+d|100\rangle+e|110\rangle+f|101\rangle+g|011\rangle+h|111\rangle$
$a^{2}+b^{2}+c^{2}+d^{2}+e^{2}+f^{2}+g^{2}+h^{2}=1$

We've seen in page 9 that with two qubits, 13 there are four possible configurations: both qubits in $\mid 0>s$ or $\mid 1>s$, or one in $\mid 0>$ with the other in $\mid 1>$, What if we make the $|0\rangle|0\rangle$ case in superposition with the $|1\rangle|1\rangle$ case? Or $|0>| 1>$ in superposition with $|1>| 0>$?

a|0 0> + d|1 $1>$

If we set the system to be in this case, we know that if we measure the first qubit and get $|0\rangle$, the second qubit must be in $|0\rangle$, without needing to measure it.

We can also measure the second qubit to know what the first qubit is without measuring it.

Similarly in this case, if the first qubit is $\mid 0>$, the second qubit must be |1>. If the first is $\mid 1>$, the second must be $|0\rangle$ 。

The qubits are correlated. This is called "entanglement".

Entanglement

```
Bell states
|\varphi \pm}\rangle=\frac{|01\rangle\pm|10\rangle}{\sqrt{}{2}}\mathrm{ and }|\mp@subsup{\phi}{}{\pm}\rangle=\frac{|00\rangle\pm|11\rangle}{\sqrt{}{2}
```


Take $\left|\phi^{+}\right\rangle$as an example, upon measuring the first qubit, one obtains two possible results:

1. First qubit is 0 , get a state $\left|\phi^{\prime}\right\rangle=|00\rangle$ with probability $1 / 2$.
2. First qubit is 1 , get a state $\left|\phi^{\prime \prime}\right\rangle=|11\rangle$ with probability $\frac{1}{2}$.

If the second qubit is measured, the result is the same as the above. This means that measuring one qubit tells us what the other qubit is.

Entanglement

Math insert - entangled states cannot be factored back to individual qubits-

Remember in section 1.1, a two-qubit state can be obtained by doing a tensor product of two individual one-qubit states. However, a Bell state cannot be factored back into two individual qubits. For example,

$$
\left|\phi^{ \pm}\right\rangle=\frac{|00\rangle \pm|11\rangle}{\sqrt{2}}=\left(\begin{array}{c}
\frac{1}{\sqrt{2}} \\
0 \\
0 \\
\frac{1}{\sqrt{2}}
\end{array}\right)
$$

If we want to factor it back to two separate qubits as in $\binom{a}{b} \otimes\binom{c}{d}$, then this set of equations need to be simultaneously satisfied
$a c=\frac{1}{\sqrt{2}}, a d=0, b c=0$ and $b d=\frac{1}{\sqrt{2}}$. Unfortunately, it is impossible. This set of equations has no solution. It can only be 50% chance of getting $|00\rangle=\binom{1}{0} \otimes\binom{1}{0}$ or $|11\rangle=\binom{0}{1} \otimes\binom{0}{1}$.

They can remain entangled even if they are separated infinitely far apart. There is no "spooky" interaction between them. All it means is that their measurement results are correlated. And entanglement simply does not depend on distance.

Check out more commonly made mistakes https://quantumfactsheet.github.io/

Gates (quantum operations)

Operator	Gate(s)		Matrix
Pauli-X (X)	$-\mathbf{x}$	-1)	$\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
Pauli-Y (Y)	$-\mathbf{Y}$		$\left[\begin{array}{rrr}0 & -i \\ i & 0\end{array}\right]$
Pauli-Z (Z)	$-\mathbf{Z}$		$\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$
Hadamard (H)	$-\mathbf{H}$		$\frac{1}{\sqrt{2}}\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right]$
Phase (S, P)	$-\mathbf{s}$		$\left[\begin{array}{ll}1 & 0 \\ 0 & i\end{array}\right]$
$\pi / 8$ (T)	$-\sqrt{\mathbf{T}}-$		$\left[\begin{array}{ll}1 & \\ 0 & e^{i \pi / 4}\end{array}\right]$
Controlled Not (CNOT, CX)			$\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]$
Controlled Z (CZ)	$\begin{aligned} & \stackrel{\bullet}{\mathbf{z}}- \end{aligned}$	\bullet	$\left[\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right]$
SWAP	\square	$\underset{\sim}{*}$	$\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
Toffoli (CCNOT, CCX, TOFF)			

CONTROLQUBIT: YOU STAY THE SAME IF I'M $|0\rangle_{9}^{\circ}$ YOU CHANGE IF I'M $\mid 1>$ 。

TARGET QUBIT: OKAY~

CNOT $|00>=| 00>$
CNOT $|01>=| 01>$
CNOT $|10>=| 11\rangle$
CNOT $|11>=| 10\rangle$

There are other controlled gates for multiple qubits you should look up. We highlight CNOT as it will be used in every(?) algorithm (sounds familiar?!)

CNOT

$$
\text { CNOT }=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Math insert - Matrix multiplication

Gates are N by N matrices that multiply to state with 2^{N} vector elements. They follow the rules such that

$$
\begin{aligned}
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x}{y} & =\binom{a x+b y}{c x+d y} \\
\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) & =\left(\begin{array}{l}
a x+b y+c z \\
d x+e y+f z \\
g x+h y+i z
\end{array}\right)
\end{aligned}
$$

and so on.

CNOT $|10\rangle=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)=|11\rangle$.

Similarly, $C|00\rangle=|00\rangle, C|01\rangle=|01\rangle$ and $C|11\rangle=|10\rangle$.

Circuit representation

Operator	Gate(s)		Matrix
Pauli-X (X)	$-\mathbf{x}$	-1)	$\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
Pauli-Y (Y)	$-\mathbf{Y}$		$\left[\begin{array}{rrr}0 & -i \\ i & 0\end{array}\right]$
Pauli-Z (Z)	$-\mathbf{Z}$		$\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$
Hadamard (H)	$-\mathbf{H}$		$\frac{1}{\sqrt{2}}\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right]$
Phase (S, P)	$-\mathbf{s}$		$\left[\begin{array}{ll}1 & 0 \\ 0 & i\end{array}\right]$
$\pi / 8$ (T)	$-\sqrt{\mathbf{T}}-$		$\left[\begin{array}{ll}1 & \\ 0 & e^{i \pi / 4}\end{array}\right]$
Controlled Not (CNOT, CX)			$\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]$
Controlled Z (CZ)	$\begin{aligned} & \stackrel{\bullet}{\mathbf{z}}- \end{aligned}$	\bullet	$\left[\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right]$
SWAP	\square	$\underset{\sim}{*}$	$\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
Toffoli (CCNOT, CCX, TOFF)			

Creating Bell states (entanglement)

$$
\begin{aligned}
& H\left||0\rangle=\frac{1}{\sqrt{2}}(|1\rangle-| \rangle\rangle\right\rangle^{\otimes}|0\rangle \\
& \text { CNUT } \left.\left.\Rightarrow \frac{1}{\sqrt{2}}||00\rangle-| 11\right\rangle\right\rangle
\end{aligned}
$$

In	Out
$\|00\rangle$	$(\|00\rangle+\|11\rangle) / \sqrt{2} \equiv\left\|\beta_{00}\right\rangle$
$\|01\rangle$	$(\|01\rangle+\|10\rangle) / \sqrt{2} \equiv\left\|\beta_{01}\right\rangle$
$\|10\rangle$	$(\|00\rangle-\|11\rangle) / \sqrt{2} \equiv\left\|\beta_{10}\right\rangle$
$\|11\rangle$	$(\|01\rangle-\|10\rangle) / \sqrt{2} \equiv\left\|\beta_{11}\right\rangle$

Try proving this table

Superdense coding

Superdense coding uses one qubit to send two classical bits. It is a nice little algorithm that demonstrates the usefulness of entanglement.

To change the phase φ, we have a commonly used gate, Z, which rotates about the z-axis by 180° 。

0.4 .18

Similarly, the x gate rotates about the

x-axis by 180°, rotating the angle θ
$e_{o} g_{0} x|0\rangle=|1\rangle, x|1\rangle=|0\rangle$ 。

$$
x=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

We have seen in page 18 the two matrices for changing φ and θ in arbitraty amounts. They form a universal gate set - they can put a state anywhere on the Bloch Sphere. The gates Z and X are special cases of them.

Q\# exercise:

Option 1: No installation, web-based Jupyter Notebooks

- The Quantum Katas project (tutorials and exercises for learning quantum computing) https://github.com/Microsoft/QuantumKatas
- SuperdenseCoding
- Task 1.3 Adjoint, MResetZ
- https://docs.microsoft.com/enus/qsharp/api/qsharp/microsoft.quantum.measurement.mresetz
- https://docs.microsoft.com/en-us/learn/modules/qsharp-create-first-quantum-development-kit/
- open Microsoft.Quantum.Measurement;

Gates

unitarity $U^{\dagger} U=I$

So that it is reversible and probabilities add up to 1

Math insert - unitary, adjoint or Hermitian conjugate

In math, unitarity means $U^{\dagger} U=I$, where I is the identity matrix and the " \dagger " symbol (reads "dagger") means adjoint or Hermitian conjugate of matrix U. It can be further written as $U^{+}=\left(U^{*}\right)^{T}=\left(U^{T}\right)^{*}$, where " T " denotes transpose and "*" complex conjugate:

$$
\left(\begin{array}{c}
U_{1} \\
U_{2} \\
\vdots \\
U_{N}
\end{array}\right)^{T}=\left(\begin{array}{llll}
U_{1} & U_{2} & \ldots & U_{N}
\end{array}\right)
$$

and if $a=a_{0}+i a_{1}$, then $a^{*}=a_{0}-i a_{1}$ by definition. Therefore,

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{+}=\left(\begin{array}{ll}
a^{*} & c^{*} \\
b^{*} & d^{*}
\end{array}\right)
$$

Superdense Coding Teleportation CHSH Game

For certificate 1

- Complete any one quantum kata
- Take a screenshot or photo
- Post on Twitter or LinkedIn
- Tag the following
- Twitter: @KittyArtPhysics @MSFTQuantum @QSharpCommunity \#QSharp \#QuantumComputing \#comics \#physics
- LinkedIn: @Kitty Y. M Yeung \#MSFTQuantum \#QSharp \#QuantumComputing \#comics \#physics

Participate

- Microsoft Q\# coding contest is happening from June 19 to June 22, 2020. Register now! https://codeforces.com/blog/entry/77614
- Azure Quantum Developer Workshop https://aka.ms/AQDW

Questions

- Post in chat or on Hackaday project https://hackaday.io/project/168554-introduction-to-quantumcomputing
- Past Recordings on Hackaday project or my YouTube https://www.youtube.com/c/DrKittyYeung

